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Scope of NASA-Ames Research Grant No. NAG 2-727

Work under this agreement started on August 1, 1991. This final report is presented in
two parts. The first part refers to computing the helicopter trim settings of periodic initial
states and control inputs sequentially and in parallel. The second part refers to an

exploratory study of a subspace iteration method as an alternative to the QR method for
Floquet eigenanalysis. The papers resulting from this study are:

1) Achar, N. S., and Gaonkar, G. H., "Helicopter Trim Analysis by Shooting and Finite
Element Methods with Optimally Damped Newton Iterations", (In press) American

Institute of Aeronautics and Astronautics Journal, 1993.

2) Achar, N. S., and Gaonkar, G. H., "An Exploratory Study of a Subspace Iteration
Method as an Alternative to the QR Method for Floquet Eigenanalysis", submitted for

possible publication in the Journal of American Helicopter Society.
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Helicopter Trim Analysis by Shooting and Finite Element

Methods with Optimally Damped Newton Iterations

Abstract

Helicopter trim settings of periodic initial state and control inputs are investigated for

convergence of Newton iteration in computing the settings sequentially and in parallel. The

trim analysis uses a shooting method and a weak version of two temporal finite element

methods with displacement formulation and with mixed formulation of displacements and

momenta. These three methods broadly represent two main approaches of trim analysis:

adaptation of initial-value and finite element boundary-value codes to periodic boundary

conditions, particularly for unstable and marginally stable systems. In each method, both

the sequential and in-parallel schemes are used and the resulting nonlinear algebraic

equations are solved by damped Newton iteration with an optimally selected damping

parameter. The impact of damped Newton iteration, including earlier-observed divergence

problems in trim analysis, is demonstrated by the maximum condition number of the

Jacobian matrices of the iterative scheme and by virtual elimination of divergence. The

advantages of the in-parallel scheme over the conventional sequential scheme are also

demonstrated.

Notation

a

c

Cd

Cd0

=Lift curve slope

=Control-input vector

=Resultant profile drag force in the plane of the rotor disk opposite

to the flight direction

=Profile drag coefficient
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T
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W

Y

y(t;yo)

OLs

=Rolling moment coefficient

=Pitching moment coefficient

=Thrust coefficient

=Blade pitching-moment coefficient

=Weight coefficient of the helicopter

=Equivalent fiat plate area of parasite drag

=Aerodynamic moment per unit length of the blade in flap and lag

directions, respectively

=Objective function to be minimized

=Hamiltonian

=Identity matrix

=Jacobian or nondimensional torsional inertia

=Lagrangian

=Generalized momentum (L_)

=Flap natural frequency (rotating)

=Generalized coordinate

=Nonconservative force

=Rotor radius

=State vector y augmented with control-input vector c

=Initial and final times

=Kinetic energy

=Flight speed or Potential energy

=Work done by Q

=State vector

=y(t) with initial condition y(0) = y0

=Shaft tilt angle

=Flap response
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=Lag response

=Azimuth angle

=Collective, longitudinal cyclic and lateral cyclic pitch angles,

respectively

=Pitch angle ( = 0o + 0c cos¢ + 0s sine )

=Advance ratio ( = V cOSas/flR )

=Dimensionless flight speed ( = V/fiR )

=Dimensionless nonrotating flap, lag and torsional natural frequencies

=Rotor speed

=Lock number (blade inertia parameter)

=Newton damping parameter

=Inflow

=Newton direction (see Eqs. 4 and 5)

=Rotor solidity

=Transpose of []

=Vector norm

=Gradient of g

=Time derivative of ( )

=Partial derivative of ( ) w.r.t, q, similarly subscripts p, q, q, c and y

indicate partial differentiation.

Introduction

The helicopter trim settings comprise control inputs for required flight conditions and

the corresponding initial conditions for periodic response. They are prerequisite for stability

and vibration studies. The control inputs are specified indirectly so as to satisfy flight

conditions of prescribed thrust levels, rolling and pitching moments etc. In addition to the
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nonlinearity of the system and control-input equations, the control inputs appearnot only

in the system damping and stiffness matrices but in the input matrix as well, and must be

found concomitantly with the periodic response.The prediction of trim settings has been

vigorously pursuedsince the 1980sand still is a demandingexercisebecauseof divergence

of iterative schemesand excessivemachine time (Refs. 1---6).

Particularly, for marginally stable and unstable systems, the shooting method is

increasinglyused(e.g., 2GCHAS, Ref. 7); however, much recent research has been centered

on temporal finite element methods of different versions, such as displacement, mixed and

bilinear formulations, with further classifications in each of these formulations involving h,

p and hp versions (Refs. 4,5,8,9). No matter which method is used, computation of trim

settings leads to nonlinear algebraic and transcendental equations, whose solution at

present cannot be based on solid theory (Ref. 10). In fact, the computational difficulties of

these equations virtually preclude the translation of several trim analysis methods into

robust algorithms with global or reasonably qualified convergence characteristics. Little

information is available on the nature of such difficulties or on ways to quantify and

alleviate them. Newton's method is the most widely used and perhaps the best method of

solving nonlinear equations (Ref. 10). But while it guarantees quadratic convergence (the

number of significant or accurate digits doubles after each iteration), it guarantees only

local convergence and is sensitive to the initial guesses or starting values. And even with

good starting values, the method can exhibit erratic divergence due to numerical corruption

(Ref. 1).

The present investigation covers this divergence problem with respect to the shooting

and two temporal finite element methods, which typify broadly two classes of methods:

adaptation of time marching methods of initial-value problems and finite element methods

of boundary-value problems to periodic boundary conditions. It also covers the in-parallel

scheme or the simultaneous computation of initial conditions and control inputs vis-a-vis

the sequential scheme (Ref. 2), in which the iterations for the initial conditions and control
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inputs are carried out as two separatecomputational blocks, one following the other (Refs.

1,2). It must be emphasizedthat the divergenceproblem is not peculiar to the in-parallel

scheme.In fact it is as much a part of the sequential scheme.Moreover, the bulk of the

earlier trim analysis investigation usessequential computation. An exception is Ref. 1,

which found appreciable machine time saving through the in-parallel scheme in the

shooting method. However, that finding is masked by erratic divergence of Newton

iteration.

Given this background, the presentinvestigation is noteworthy in the following respects:

1. The Newton damping parameter is examined concerning both its selection (with a

rational basisof minimizing an objective function) and its role in alleviating the sensitivity

of Newton iteration to the starting values in the solution of trim settings of initial state

and control inputs.

2. The computational reliability of the Newton iteration without and with optimal

damping is quantified by the condition number of the Jacobian matrix, which also explains

rationally the earlier-observeddivergenceproblems (Ref. 1).

3. Concerning divergence and machine time, a comprehensive comparison

sequential and in-parallel schemesis provided; each scheme is treated with

iteration both without and

methods, representing two

investigations.

with damping. This exercise includes three trim

main approachesof trim analysis, particularly in

of the

Newton

analysis

stability

Damped Newton method

The method retains the highly attractive features of the original Newton method (e.g.,

quadratic convergence) and yet almost global convergence

solution of n nonlinear equations

fi(sl, s_, ...,sn) = 0; i = 1,2,...,n

(Ref. 10). We consider the

(1)



or, in equivalent form,

f(s) = 0 (2)

for which the Jacobian matrix is given by

J(s) = cgf 6fi.
= _j, i,j = 1,2,...,n (3)

The algorithm begins with the "improved" solution

s_÷_= s_ + _ (4)

where m is the iteration counter, ,_ is the "optimal" damping factor and _ is the solution of

the linear system,

_ = - J(s)-, f(s) (_)

The terms improved and optimal are qualified in the absence of a solution s* such that f(s*)

= 0 and of optimality conditions to determine )_. The theory of unconstrained minimization

and weak line search (Refs. 10,11) provides a rational basis of quantifying these two terms

and solving for the damping factor. We bypass the mathematical details and include

instead a brief account of the method, following Ascher et al. (Ref. 10).

s m+l is an improvement over s TM in the sense of minimizing an associated objective

function g(s m + )_) monotonically, where

n

g(s) = 0.5Z.__ fi(s) 2 (6)

The objective function has the property that g(s) > 0 and g(s*) = 0 when f(s*) = 0. Thus,

the minimum of g(s) provides the solution. Moreover, the Newton direction is a descent

direction; that is, for the gradient Vg, we have

_tVg = _ [j-t fit [Jt f] (7a)

= - f(s)2= -2g < 0 (Tb)

Expanding g(s+)_), we obtain

g(s m + A_)= g(s m) + )_tVg(sm) + O(A 2 I_l 2) < g(s m) (8)

where Vg, which is equal to jtf, shows that minimization is sought in the Newton's

direction. Thus 8m÷t is an improvement over s m in the sense that

g(s m÷l) = g(s m + _) < g(s m) (9)
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which says that the solution s* is keyed to the generation of monotonically

valuesof g(s).

We define from Eq. (8)

decreasing

conditions:

9(0) = g(s m) (14a)

¢(Z_m) = g(sm -I" Z_m_) (14b)

= _tYg(s m) (14c)
_b'(O) = ( S m + z_)lz _ 0

The criterion that ¢(A) is a minimum with respect to A can be expressed as

__2 ¢, (0) ,_m (15)

2(¢(Am)- 9(0)- Ara¢'(0)) 2(1-O')

The preceding algorithm has been found to work generally well (Ref. 10); direct

computational experience in computing trim settings supports this as well. However, there

are cases of the algorithm breaking down when the objective function fails to decrease

monotonically. That is, when g(s) has loca_ minima and/or singularities, Eq. (13) may not

be a good approximation to g(s). Hence, the algorithm fails to compute A satisfying Eq.

(9). This problem has been alleviated as follows. At the end of every iteration, before

g(S TM + ,_) - g(s m)

_(_) = (10)
A _tVg(s m)

The algorithm (Refs. 10,11) makes use of a fixed parameter a such that

0 < o. < 0.5 (11a)

o.__ _(A) __(1-o.) (11b)

From Eqs. (8) and (11), we have

(1-2_ (1-o.))g(sm)_<g(sm,_)<_(1-2AO')g(s_) (12)

The role of O"is sketched in Fig. 1, which shows the inherent predictor-eorrector structure

of the algorithm (Ref. 10). For the mth iteration counter, we approximate the scalar

objective function by a quadratic:

g(sm+ )_) _ aA2 + b_ + c= ¢()_) (13)

where the three unknown constants -- a,b and c _ are determined from the following
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computing the damping parameter A, s m÷l "- S m -b A_ is computed with A = 1.0. Then, if

any of the control inputs in sm*l exceeds physically realistic values (say shaft tilt as,max =

20°), an upper limit for A, Am, is chosen such that the control inputs in sm÷l are physically

realistic. Then, the algorithm proceeds to find optimum A in the range 0 to Am as before.

Again, in extreme cases if the algorithm fails to find A satisfying monotonicity Eq. (9), Am

itself is chosen as the optimum A. Though the monotonic decrease in g(s) is not guaranteed

with A = A_, the algorithm converges to the trim settings, which are elaborated on later

with the help of numerical results.

Condition number of J

The relative error in the solution of trim equations by Newton iteration can be bound by

utilization of the condition number of the Jacobian matrix, cond(J), which also quantifies

the robustness of the Newton direction; see Eq. (5). To provide an improved appreciation

of the role of cond(J), we emphasize that the actual computation of trim equations does not

follow Eq. (5); it follows a numerically perturbed equation:

[J + 6J] {_ +5_} = {f + 6f} (16a)

The following inequality (Ref. 12)

[[_'[[ <cond(J) [ [[_J[[,__+ [[6f[[ ] (16b)I] ll ]lJJJ IlflJ
shows that cond(J) represents the maximum possible magnification of the sum of relative

errors in J and f. Thus, the higher the value of cond(J), the greater the sensitivity of Eq.

(16a) to computational perturbations and, consequently, the less well-conditioned is the

computational problem of finding the control inputs and periodic initial state.

With the definition

/_= max { 1/cond(J) } (17)

and with Eqs. (3) - (7), it can be shown that (Ref. 10)

[Vg[l([ = /_[Jtf[ [Jif[ _< [fI_=-Vgt_ (18)
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Equations (5) and (18) show that, with increasing value of cond (J), the overall

conditioning of the Newton direction decreases.That is, the product Vgt_ decreases

although the correction I_1 is not small and g(s) does not decrease rapidly along the

Newton direction _. Schematically stated, lines ab and ac tend to merge with line ad in

Fig. 1.

Trim formulation

We include a brief account of the shooting method (Ref. 1) and the weak version of a

temporal finite element method with mixed formulation (Ref. 8) of displacements and

momenta. The algorithmic details of the temporal finite element method with displacement

formulation run similar to those of mixed formulations and are omitted here; for details see

Ref. 4. This facilitates appreciation of the algorithmic aspects of sequential and in-parallel

schemes of Newton iteration in the trim analysis by the shooting and finite element

methods. For convenience, the latter two finite element methods of mixed and

displacement versions are, respectively, represented as FEM-M and FEM-D. In the three

methods, the algorithm follows the in-parallel scheme or the simultaneous computation of

initial conditions and control inputs. The straightforward adaptation to the sequential

scheme is not spelled out explicitly.

Shooting method

In trim analysis, equations of motion in state variable form

= G(y(t),c) (21)

satisfythe unknown periodic initialstate Y0, that is,

y(27r;y0) - Y0 = 0 (22)

Further, the unknown control inputs c should be determined such that the desired flight

conditions

f(y,c)= 0 (23)
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are satisfied. Equations (22) and (23) comprise the nonlinear algebraic trim equations,

which are symbolically represented as Eq. (2), where s = [y,eJ t is the augmented vector of

trim settings. These equations are solved using Newton iteration to get the trim settings.

FEM-M

The Hamilton's Law of Varying Action or HLVA of a system can be represented as

tf tf

6f(L+W) dt-(L_ 6q) [ =0 (24)

to to

in which the system is represented in configuration space in terms of the generalized

coordinates. In the mixed formulation, we first represent Eq. (24) in terms of the

coordinates from the phase space using the Hamiltonian of the system, such that both

generalized displacement q and generalized momentum p become primary variables. By

varying the Hamiltonian of the system,

H = H (q,p,t) = p.cl - L (q, ct, t) (25)

we obtain

Hence,

6I-I= 6p.(l+p.6(l-b'L(q,cl,t)

OL = oCpJl+ p.6cl- 6II(q,p,t)

= 6p.cl+p.6cl- [Hq.6q + Hp.6p ]

Substitutingfor b'Lin Eq. (24),we have

tf tf

f ( 6p.cl +p.6cl -[ Hq._q + Hp.6p - Q _q ] ) dt = (p.6q) ] (26)
toto

In the above equation, q occurs only in the first term. Hence, integrating the first term by

parts, q can be eliminated from the above equation to get

tf tf

f ( - 6/).q +p._ -[ Hq.6q + Hp.6p - Q _q ] ) dt = [ (p._q) - (q.6p)] [ (27)
to

to

With the definition



and

,5y= 5p ' I;I= Hp

(28)

Eq. (27) can be expressed in vectorial form:

tf

f ( _?._y- _y.fi ) dt =
to

tf

[_y.B] I (29)
to

When I:I, defined in Eq. (28), is nonlinear in y, it can be linearized about a steady state

value 1/as

I2I = I:I(:y) + t:I(y)y _y (30)

where

in., iH q,q.q.,p]]_(Y) = Hp ' --- Hpq Hpp

(31)

Substituting Eq. (30) in Eq. (29), we obtain

tf tf

f [ 5y.i_ (:_ + Ay )--hy _I(_)- 5y [H(:_)y] Ay] dt= (hy.B)]
to

to

(32)

Next, the time interval [t0,tf] is discretized into m smaller segments; i.e., to = ti < t2 < ..t_

•.< tm÷l -- tf. In each of these temporal elements, the generalized coordinate qe and the

momentum Pe can be expressed in terms of some appropriate shape functions as follows.

Since the derivatives of q and p do not occur in Eq. (27), constant values with discrete

end-momenta and displacements will satisfy the completeness requirements (Ref. 8); i.e.,

we can have
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if ti< t < ti+1

(,i}Ye = p ift = ti ;Ye [Pi÷

if t = ti,l (33)

However, the virtual displacement and the virtual momentum

differentiable functions (Ref. 8). Hence, we choose

{_qi ]5Ye- 5p = (1 T) 0 r 5qi÷l

5Pi÷l

require piecewise

(34)

with

(t- ti)
T-- (ti+1 - ti)

Substituting for Ay and _y in Eq. (32) from Eqs. (33) and (34), respectively,for the ith

time element, we have

ti+ I ti÷l

_Ye [ f [ l_It.l_ (Ye+ Aye) -- M t I_I(:Y) - M t I:I(:_)y Aye] dt - (M t B) [ ] = 0
ti

ti

Defining

and

ti+l ti+l

Fe = f [ M t I:t(y)- 1VIt.i_ Ye] dt, Ke = f [M t I:I(y)y -1VIt.I_ ]dt

ti ti

ti÷l

Ce= (MrB) I
ti

-pi

qi

pi÷l

--qi÷l

(35)

Eq. (35) can be expressed as

Next, all the m elemental

6_,e [ Fe+ Ke Aye+ Gel = 0

Eqs. (36) are generated and assembled to get

(36)

the global,

linearized variational statement
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_}[F+ K Ay+G]= 0 (37)

where K, F, G, y, 6y are the global stiffness matrix, force vector, momentum vector,

displacement vector and the virtual displacement vector, respectively. The elements of the

vectors G, y and 6_r are given below.

G = [-Pl, ql, 0, ... 0, 0, Pro+l,--qm.l Jt (38a)

y = Lq,, p_,q2,p2,...,_m,_m]t (38b)

5_t -- [ 6ql, 5pl, 5q2, 5p_ ..., 5qm,x, 5p_+, Jt (38c)

Then, applying the periodic boundary conditions to Eq. (37) (i.e., ql = %÷1 and p_ = p,,,,_),

we get

F + K 5y = 0 (39)

where F and K are F and K, respectively, rearranged after applying the boundary

conditions. Next, Eq. (39) is solved using Newton iteration until the series y = r, hyi

converges, both F and K being updated at the end of each iteration.

Parallel trim method

For the parallel solution of trim settings, we reformulate the F and K of Eq. (39) as

follows. Since I:I, defined in Eq. (28), is nonlinear in both y and c, it can be linearized about

some mean position _ and C. (Note: The Hamiltonian H is nonlinear in q and p, and the

generalized force Q is nonlinear both in p, q and c.) That is,

_I= [ _(_,e) + _(_,e)y Ay+ I_(_,e)cAc] (40)

where

and I:I(_,e)y = I_I(:_)y;see Eq. (31). Substituting Eq. (40) in Eq. (29), we get the

variational statement for each element as

ti÷l

[ f (Y'e + AYe)- Mt _I(p) - M t I:I(])y Aye- MtI:I(y, Qc AC] dt

ti
ti+l

-(MtB) I ] =0 (41)
ti
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Defining

ti+l ti÷l

Fe-" f [ M t I:I(_,dy)-l_lt.l_ Ye ]dt, Ke = f

ti ti

and

ti+l ti+l

Kec = f [M t I:I(:9,C)c] dt, Ge = (Mt B) I

ti ti

Eq. (41) can be represented as

_re [ Fe+ Ke Aye+ Kec Ac + Ge] = 0

[M t I:I(:_,¢)y -]_[t.]_ ]dt

--Pi

__ qi

Pi÷l

--qi+l

(42)

(43)

Next, all the elemental Eqs. (43) are generated and assembled to get the global, linearized

variational statement

6_r[ F+ KAy + gcAc + G] = 0 (44)

Further, Eq. (23) can be linearized as

f(y,c) = f(:9,_) + [ f(P,¢)y/ly + f(Y,¢)c hc ] = 0 (45)

Now, Eqs. (44) and (45) are combined and the boundary condition is applied to get the

augmented force vector and stiffness matrix, F and K of Eq. (39), respectively. Then, Eq.

(39) is solved iteratively, until the augmented vector s = _Asi converges where hsi = [/iyi,

ciJt.

Model description

For computational purposes, flap-lag and flap-lag-torsion models are selected; both the

models are based on quasisteady aerodynamics and rigid body mode representation.

However, for the simplicity of illustrating the algorithmic and computational aspects,

model description and much of the discussion of numerical results are for the flap-lag

model, which was also treated in Ref. 1 by _he shooting method. We begin with the state

vector y(t) with four components comprising the flap angle /3 and lag angle 6" and their
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rates # and (: y(t) = [ #(t), #(t), ((t), ((t) it. Part of the trim analysis is to compute the

periodic initial state Y0 such that

y(2_r;y0) -- Yo = 0 (46)

The remaining part of the trim analysis is to compute the four parameters -- three pitch

angles 00, Os and 0c and shaft tilt as -- to satisfy the following four trim equations of force

and moment balance:

Ct cos(as) + Ca sin (as) = Cw

Ct sin(as) - Cd cos(as) -- 0.5 #2

CI=0

C., = 0

(47)

(48)

(49)

(50)

The solution of four initial--condition equations, typified by Eq. (46) and four trim Eqs.(47)

- (50), constitutes the trim analysis. The nondimensional thrust Ct and horizontal force Cd

depend on the total blade root shear forces: Ft_, normal to the blade in the flap direction;

_'c., in the lag direction, and _'r, in the outward radial direction. These shear forces are

given by

1

_'_ = -1.5 #- 1.5 cos(#) sin(#)(l+()2 + f F_ dr (51)
0

1

Fq = -1.5 (cos2(#) + 3 sin(#)cos(#) (1+() # + cosZ f Fq dr (52)
o

_'r -- 1.5 [ (1÷_')2 COS2(#) + _]2] (53)

Then, Ct and Cd, in Eqs. (47) - (48), and the rolling moment and the pitching moment

coefficients, C1 and C_, respectively, in Eqs. (49) - (50), are given by

2_r

aa = 9' 2_" f [_'13 COS(#) + Fr cos(#)]d¢ (54)
o

2_r

_ra =7 2_r f [_'!asin(B)cos(¢+¢) + _'_sin(¢+_)+ _'rCOS(#)cos(¢+()]d¢ (55)
o

cl_
tT_ 7 -'2-# f fl sin(C+() de (56)

o
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C_ (P_-I) 2_"

(77 = 7 2_r f /3cos(¢+_) de
o

The final component of the trim analysis concerns the uniform total inflow Ai:

_i = # tan(as) + Ct/[2 7-(u + )1

which is solved iteratively in combination with Ct and as.

(57)

(58)

Trim analysis results

Trim analysis uses the shooting method and the two finite element methods, FEM-M

and FEM-D. The control inputs and initial conditions are computed simultaneously as one

block in the in-parallel scheme; they are computed sequentially as two separate blocks in

the sequential scheme. Unless stated otherwise, the rigid flap-lag model with in-parallel

scheme is used; nonlinear equations are solved by conventional Newton iteration with no

damping and the following baseline values are assumed: 7 = 5, w¢_ = 0.57, wq = 1.4, a =
w

0.05, a = 6.28, Cw = 0.01, Cdo = 0.01, f = 0.01, 0 < # < 0.7. The computations are

performed on a VAX 6320. The sparse matrices obtained by the finite element methods are

solved using the NAG subroutine (F01BRF), whcih considers the matrix sparsity.

In the finite element methods, it is first necessary to arrive at the number of elements,

NEL, needed for a priori specified level of tolerance in the solution of periodic response.

This tolerance is further substantiated on the basis of a relative error norm criterion with

the shooting-method results (Refs. 1,2) as reference values. For that purpose, a typical

flight speed, _ = 0.4 is chosen. As shown in Fig. 2a for a typical initial state ]3(0), all the

periodic initial conditions, y = [/3(0), ]3(0), ((0), _(0)J t converge as the number of elements

increases. In particular, it was found that for asymptotic convergence of all the four

components of y, we need at least NEL = 12 for FEM-D and NEL = i6 for FEM-M.

Concerning the minor differences between results from the three trim methods, the relative

error norm in y = [/3, ]3, _, _J t, obtained by the respective FEM, is defined as
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1 / zll y hoot-yfe [[
Relative error norm = _ _ [ Zll Yshoo_] 2i i ], i = 1,...,NEL

As seen from Fig. 2b, as the number of elements increases, the relative error norm

decreases rapidly; for NEL = 12 for FEM-D and for NEL = 16 for FEM-iVi, the relative

error norm is less than 0.01. For the above NEL values selected on the basis of the results

at # = 0.4, it was also verified that right up to # = 0.7, the relative error norm is less than

0.01. Thus, in summary, NEL values of 12 and 16 for FEM-D and FEM-M, respectively,

guarantee 1) asymptotic convergence for # = 0.4 and 2) a relative error norm of less than

0.01 for 0.0 < _ < 0.7. Spot checks for other values of _ show that asymptotic convergence

with these NEL values holds for 0.0 < # < 0.7 as well. Overall, with these NEL values, the

control inputs 0o, 0s, 0c and as, and the periodic responses /% _, ( and _, agree with the

shooting method results. Hence, these NEL values are chosen in all the subsequent

numerical results with the flap-lag model. ( This agreement is further elaborated later on

for the flap-lag-torsion model.)

In Figs. 3-5, the machine times taken by the sequential and in-parallel schemes in the

three trim analysis methods are presented. Given the sensitivity of Newton iteration to

starting values, the results for each of the methods are presented for two sets of starting

values. In part (a), we use the "exact" solution of the preceding flight speed _ as the

starting value; the exact solution is taken as the one obtained by continuation approach

with _ as a continuation parameter and A_ _- 0.05 as the continuation step size. For

example, starting values, say at # = 0.3, are given by the solution at the preceding value of

# = 0.25. For a given flight speed, the cumulative machine times taken starting from # = 0

are shown in parts (a) of Figs. 3-5. Though prohibitively costly, this approach to the

starting values provides a rational basis of providing the 'best' starting values. The other

extreme is to begin with zero starting values, perhaps the most demanding starting values

for the iteration. This is done in part (b) of Figs. 3-5; owing to the divergence problem of

Newton iteration with zero starting values in both the sequential and in-parallel schemes,
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the results are limited to _ < 0.3. Figures 3-5 show that the in-parallel schemeis more

economical than the sequential scheme.This saving is observed for both sets of starting

values (continuation with A_ = 0.05 and zero starting values), showing that the in-parallel

scheme is preferable regardless of the starting values.

The preceding results are based on Newton iteration with no damping, and mention is

made of the divergence of the iteration with zero starting values. The impact of damped

Newton iteration on divergence and related issues are pursued in Figs. 6-9; an important

observation is that the damped Newton method did not encounter divergence. Figures 6

and 7 show the mechanism of divergence relative to iteration counter and the starting

values. This is followed by Figs. 8 and 9, which show a means of quantifying and

understanding divergence as well as computing the Newton damping parameter, which

virtually eliminates divergence.

Figure 6 shows the iteration counter versus flight speed. While iteration without

damping experiences divergence for approximately # = 0.45, damped iteration does not

diverge although its iteration counter increases with increasing #. That the Newton

damping parameter makes the iteration more controlled and "gives less room for erratic

behavior" (Ref. 10) is well borne out in Fig. 6. Also, for # > 0.6 or so, the iteration

counter in the damped iteration rapidly grows in the shooting method, indicating poor

convergence. By comparison the damped iteration in FEM-M and FEM-D is remarkably

w

smooth; the iteration counter and its growth with increasing # are much less rapid and it

hardly exceeds 15 for the complete sweep of 0.0 _ # < 0.7. As seen from Fig. 6, the

w

FEM-M and FEM-D have fast convergence up to # = 0.7 while the shooting method

exhibits slow convergence for # > 0.65. Summarizing, we observe that the FEM-M and

FEM-D are much better regarding iteration counter or speed of convergence; at # = 0.7 for

example, iteration counter for FEM-M and FEM-D is about 15 whereas it is about 55 for

the shooting method, nearly four times higheh

The divergence problem of the Newton iteration due to the starting values is further
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pursuedin Fig. 7 in the p - _ plane, wherep is related to the starting valuesas

starting value = p x exact solution

Here, p = 0.0 and p = 1.0 imply that all the starting values are zero and exact solution,

respectively. (The exact solution at any flight speed is that solution obtained by

continuation approach with A# = 0.05). This is done as a means of quantifying the

sensitivity to possible extremes of starting values and of connecting these results with an

earlier investigation (Ref. 1). The other possibility of large initial values (p > 1) is not

exercised separately. The divergence boundary of Fig. 7 corresponding to the shooting

method is similar to that of Ref. 1; the minor differences are due to the sensitivity of these

boundaries to discretization in p and #. Even with somewhat improved starting values, say

p = 0.1 compared with p = 0.0, erratic behavior of the boundaries merits mention. The

damped Newton iteration reduces the erratic behavior in general; indeed in Fig. 7 it

converges everywhere. With poor starting values (low values of p, say less than 0.5),

divergence with Newton iteration is not unexpected since it guarantees only local

convergence and is sensitive to starting values anyway. What is unexpected is divergence in

the shooting method for p as high as 0.8. Concerning divergence boundary, shooting

method is affected more than FEM-M and FEM-D. This supports the iteration counter

results in Fig. 6.

The unexpected divergence with Newton iteration and the absence of divergence with

damped Newton iteration is further investigated in Fig. 8 on the basis of the maximum

condition number of the Jacobian matrices of the iterations; see Eqs. (16a) and (16b),

respectively. The results are for p = 0.0, zero starting values. As seen from Fig. 8, the onset

of divergence in Fig. 6 for _ = 0.50 in the shooting method and _ = 0.45 in FEM-M and

FEM-D is accompanied by rapid increase in the Jacobian matrix condition numbers for

corresponding values of #. By comparison these condition numbers essentially remain

constant in all the three trim analysis methods with damped Newton iteration. This shows

that damped Newton iteration significantly improves the overall conditioning of the
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iteration.

Figure 9a shows, for # - 0.3, the monotonic decrease of the objective function, see Eq.

(6). We emphasize that g(s) = 0 gives the damping parameter A. It is seen that the

objective function decay is monotonic on expected lines in all the three trim analysis

methods and that the minimization is fairly rapid. That is, the iteration counter hardly

exceeding 7 for g(s) = 10-11 for each of the three trim analysis methods. Figure 9b shows

the initial nonmonotonic decrease of the objective function. In such cases the algorithm

follows the remedial measures referred to earlier in conjunction with Eq. (9). Two

distinguishing features of Fig. 9b merit mention. First, even in cases when A cannot be

computed on the basis of monotonic decrease of the objective function, the algorithm still

converges to the trim settings with as few as 7 iterations in all the three methods. Second,

despite a couple of initial iterations involving nonmonotonic decrease, it later, converges

with a rapid monotonic decrease.

Thus far, the influence of the damped Newton iteration on the divergence problem of the

in-parallel scheme is addressed. We now conclude with a brief discussion of its influence on

the sequential scheme. In this scheme, unlike the in-parallel scheme, there are two sets of

starting values; one for the response loop and one for the control loop. Without damping,

the divergence boundary for the shooting method with the sequential scheme is given in

Fig. 10; for the other two methods they remain nearly the same and are not shown. For all

the three methods, the starting values for the response loop are assumed zero and those for

the control loop are chosen using the starting value parameter p:

Starting value = p x exact control settings

where the exact control settings are those obtained by the continuation approach with A_

= 0.05. In this scheme, it is observed that the divergence is mainly due to the sensitivity of

the response loop to the physically unrealistic values of the control inputs, estimated in the

control loop. When the control-input computations are prevented from generating

unrealistically large values either by damping or by a priori stipulation, the response is
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always found to converge. That is, damping the control loop is more effective than

damping the responseloop, and, therefore, in this illustrative example, the dampedNewton

iteration is implemented only in the control loop. After introducing the damped Newton

iteration, in both versionsof FEM, the sequential schemeconvergesin the entire p - #

plane right up to _ < 0.7. However, in the shooting method, i.e. Fig. 10, though there is an

increase in the region of convergencebecauseof damping the Newton iteration, the

iteration was found to cycle for _ beyond 0.55; i.e., after some iterations, the algorithm

computes a solution that it has already computed in one of the previous iterations and

hence the algorithm enters into an infinite loop without converging. This cycling

phenomenonis found to be independent of the ill-conditioning or near-singularity of the

Jacobian as quantified by the condition number of the Jacobian.This problem is involved

and not well-understood, (Ref. 10) and there seemsto be no known method to treat it

effectively.

The precedinginvestigation basedon the flap-lag model results is further verified on the

basis of flap-lag-torsion model results. The rotor parameters are identical to those of the

flap-lag model; the additional torsional parameters are uJ_ = 3.0, J = 0.002 and C_, =

-0.02. Overall, the results are nearly identical to those of the flap-lag model results,

specifically these results refer to damped Newton iteration (e.g., divergence boundary,

condition number and monotonic decrease of objective function) and to sequential scheme

vis-a-vis in-parallel scheme. In Fig. 11, we select for illustration the torsional response rate

_(t) among the six components of the state vector y = [8, _, _, 4, _o, _jt and the shaft-tilt

angle O_s among the four components of the control-input vector c = [80, #c, #s, asJ t. The

results from the three methods agree. Finally, as in Figs. 3-5, Fig. 12 shows the machine

time saving with the in-parallel scheme in the FEM-D method; similar trends (not shown)

are exhibited by the FEM-M and shooting methods with the in-parallel scheme. The only

major difference between the flap-lag and flap-lag-torsion results concern NEL or the

number of elements needed for asymptotic convergence of the periodic response as shown in
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Fig. 2. For the latter case, because of highly oscillatory nature of the torsional response,

NEL values as high as 60 and 90 are needed for FEM-D and FEM-M, respectively (Ref.

14).

Concluding remarks

The three trim analysis methods are investigated with an optimally selected damping

parameter )_; )_ = 1 refers to conventional Newton iteration. With each trim analysis

method, both the sequential and in-parallel schemes of computations of initial conditions

and control inputs are exercised. The computational efficiency is described on the basis of

both machine time and convergence characteristics, which are quantified by the maximum

condition number of the Jacobian matrices of the Newton iteration. The iteration counter

and its growth with increasing flight speed and divergence boundaries correlate with this

quantification. That investigation demonstrates the feasibility of using an optimally

selected Newton damping parameter in the in-parallel scheme to improve the

computational efficiency of the trim analysis. It also shows the following:

1) In the three trim analysis methods with both the sequential and in-parallel schemes,

the optimally selected damping parameter virtually eliminates divergence up to flight speed

w

# = 0.7 except for a small region beyond # > 0.55 in shooting method with the sequential

scheme.

2) The in-parallel scheme takes much less machine time compared to the sequential

scheme with comparable convergence characteristics.

3) At very high advance ratios (for fi > 0.6 or so), the shooting method shows slow

convergence in that the iteration counter and the machine time increase rapidly. By

comparison, FEM-M and FEM-D show fast convergence for the entire range of 0 _< # _<

0.7.

4) The cycling phenomenon observed at # > 0.55 in the shooting method with the
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sequentialschemeand with dampedNewton iteration merits further research.

The precedinginvestigation is restricted to a genericNewton-Raphsoniteration and does

not consider a wide class of related methods such as quasi Newton and other globally

convergent methods. Nevertheless it should provide a reference point for using and

comparatively assessing such methods in helicopter trim analysis.
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An Exploratory Study of a Subspace Iteration Method as an

Alternative to the QR Method for Floquet Eigenanalysis

Abstract

Floquet eigenanalysis requires a few dominant eigenvalues of the Floquet transition

matrix (FTM). Although the QR method is used almost exclusively, it is expensive for

such partial eigenanalysis; the operation counts and, thereby, the approximate machine

time grow cubically with the matrix order. Accordingly, for Floquet eigenanalysis, the

Arnoldi-Saad method, a subspace iteration method, is investigated as an alternative to the

QR method. The two methods are compared for machine-time efficiency and computational

reliability, which is quantified by the condition numbers of the required eigenvalues and

the residual errors of the corresponding eigenpalrs. The Arnoldi-Saad method takes much

less machine time than the QR method with comparable computational reliability and

offers promise for large-scale Floquet eigenanalysis (say, FTM order > 100).

Introduction

Floquet theory is the primary mathematical tool in the investigation of rotorcraft

stability. Its application involves computation of the following: 1) .the trim settings of

initial state and control inputs for periodic response satisfying the flight conditions; 2) the

FTM about that trim response, and 3) a few largest eigenvalues of the unsymmetric FTM,

which often is a byproduct of the trim analysis. This study examines the computational

aspects of the third item.

The information base on generating the FTM and its eigenanalysis is limited to relatively

small-order systems (say, system or FTM order smaller than 100) and the generic QR



method is used almost exclusively for eigenanalysis(Ref. 1). Though the machine time

neededto generatethe FTM is sensitiveto severalfactors, suchassystemnonlinearity, and

defies generalization, it far exceedsthe machine time for the eigenanalysisof the FTM.

Therefore, for small-order systems,the searchfor a viable alternative to the QR method is

not an issue. Put for large-vrder systems, this search merits further investigation for two

related reasons. First, the QR method is the recommended method for a complete

eigenana/ysis while Floquet eigenanalysis requires only a few most dominant eigenvalues or

partial eigenanalysis. Second, for large systems, the QR method is expensive since the

operation counts grow cubically with the matrix order (Refs. 2,3). Therefore, the machine

time also grows approximately cubically with the matrix order. Further, the recent

developments of the computer codes based on the Lanczos procedure for the partial

eigenanalysis of large symmetric matrices (Ref. 2) motivated similar ongoing developments

for the unsymmetric case.

There are two main approaches to this unsymmetric case: the simultaneous iteration

methods (Refs. 4-7) and the Krylov subspace methods (Refs. 8-11). The success of the

Lanczos procedures for the symmetric case (Ref. 2) has focused attention on the Krylov

subspace methods, and it is also increasingly recognized that the simultaneous iteration

methods are not competitive with the Krylov methods. The Krylov methods comprise two

sub classes: methods based on orthogonal projection, such as the Arnoldi-Saad or AS

method (Refs. 8,11), and those based on oblique projection, such as the Lanczos method

(Ref. 9). Exploring the feasibility of these methods in the Floquet eigenanalysis, even

within the limited scope of small-order FTMs, should prove useful if only to motivate

further search for an alternative to the QR method for large rotorcraft systems. The

present investigation chooses one of the Krylov subspace methods, the AS method, and

compares it with the QR method for machine-time efficiency and computational reliability.



Arnoldi-Saad method

We begin with an n x n FTM, A. The AS method sequentially reduces A to an m x m

upper Hessenberg matrix Hm ( m << n ), which contains the dominant eigenvalues of A.

For extracting p dominant eigenpairs, the algorithm generates the Krylov subspace of

dimension m > p. That is, the algorithm starts with an arbitrary vector vl and generates a

sequence of vectors v_, v_, ..., vm by applying the Gram-Schmidt process to the sequence of

vectors {vl, AVl, A_vl,...,Am-Lvl} according to the recurrence formula (Ref. 8):

hj,hj vj,l _-Avj - i!lhij vi, (1)

The hij (i- 1,..,j+l) are chosen so that vj÷l is orthonormal to vi, i = 1,2,...,j and

[[vj÷l[[ = 1. Hence, the set of m vectors {vu v2, ..., Vn,} forms an orthornormal basis for m-

dimensional subspace spanned by { vl, Avu A2vl, ..., Am-1 v_ } . It can be shown (Ref. 8)

that the n x m matrix B, whose columns comprise m vectors {v_, v2, ..., Vm}, satisfies

H, = A B, (2)

where Hm is an m x m upper Hessenberg matrix; B will be a tridiagonal matrix if A is

symmetric. After generating Hm, its eigenpairs can be obtained using the QR method.

Convergence

In the AS method, the algorithm breaks down at the jth step ( i.e., in the generation of

the jth Krylov vector) if and only if hj÷l,j in Eq. (1) becomes zero. But, hj÷l,j = 0 means

that the Krylov vectors AJvl, AJ*_v_ AJ*_v_,..., are linearly dependent on the previous j

3



Krylov vectors. The smallest value k of j at which the succeedingKrylov vectors become

linearly dependentis known as the gradeof the vector v_ w.r.t. A (Ref. 12). For such a

vector of gradek, there areconstantsa0,at,..,ak suchthat

[aoI + atA + a2A2 + a3A3 + .... +akA k] vl = 0, (3)

from which it follows that

[ao + alA + a2A 2 + a3A 3 + .... +ak/k k] = 0, (4)

where A are the eigenvalues of A. Equation (4) is known as the minimal polynomial of vi

with respect to A (Ref. 12). When Eq. (3) is satisfied, the vectors v_, v2,...,Vk span the

dominant subspace of dimension k of A, and the span of those vectors is invariant. Hence,

the eigenvalues of Hk = BtAB are the exact dominant eigenvalues of A.

On the other hand, when the number of Krylov vectors chosen is less than the grade of

the vector v_, the accuracy of the eigenvalues computed decreases with their decreasing

order of magnitude; the most dominant eigenvalue will be the most accurate and the

smallest eigenvalue will be the least accurate. However, it must be mentioned that issues

such as roundoff errors and reorthogonalization (Ref. 8) are not addressed in this

exploratory study.

Eigenvalue reliability

We use two eigenvalue reliability parameters: condition number of an eigenvalue and

residual error of an eigenpair (eigenvalue and corresponding eigenvector). The matrix A

and its transpose At have the same eigenvalues. We assume that _ is one such simple



eigenvalue(of multiplicity one) and that x and y are the correspondingright and left

eigenvectors;that is,

Ax = Ax and Aty = Ay (5)

Then the condition number of A is given by (Ref. 12)

cond(A) = lytxl-L (6)

We emphasize that ,k is usually complex, as are the eigenvectors. It is yt (not the

hermitian transpose of y) that is used. Further, the vectors are normalized, that is,

]]x]l = Ilx h xl] = 1= ]lY]]- ]]yh Yl]-If A is hermitian, ]]yt x] I -1. The significance of

cond()0 is demonstrated by the following relation:

I AI < II AIIcond (A), (7)

where [[6A[[ represents the spectral norm of the matrix of perturbations of the FTM due to

sources such as roundoff and discretization. Further, 6A represents the resulting

perturbation of A due to working with the computed A + 6A, instead of A. In other words,

the computed eigenvalue is A + 6A, which is the exact eigenvalue of A + 6A. Thus, cond(A)

provides a measure of the sensitivity of an eigenvalue, typified by /_A. If small changes in

the elements of the FTM can lead to arbitrarily large changes in an eigenvalue, then the

eigenvalue problem for that eigenvalue is said to be ill-conditioned. That a matrix is well-

conditioned for eigenvalue computations is no guarantee that it is well-conditioned for

eigenvector computations. Though the con_tion number approach has a rigorous basis, a

similar approach for eigenvectors is too involved for computing the error bounds.



Therefore, we study the reliability of the computed eigenpair ()_,x) by the residual error

approach, which gives the relative error measure e. That is,

ItAx-  ll Ilr II
= = ' (8)

where I]rll is the Euclidean norm of the residual error. It appears that cond(A) and e should

provide adequate information on the reliability of a computed eigenpair.

Results

The eigenanalysis comprises computation of a few dominant eigenvalues, including their

eigenvectors and the corresponding condition numbers and residual errors; see Eqs. (7) and

(8). These computations from the AS method are compared with those from the QR

method for FTMs of various order. Table 1 is a representative example.

The QR results in the last row of Table 1 are taken to be exact; very low residual error

and condition number are noteworthy. Before comparing the results from these two

eigenanalysis methods, it is important to realize that the eigenanalysis of large

unsymmetric matrices represents a computational barrier and several issues concerning the

minimum dimension of a subspace matrix merit further research. Nevertheless, comparison

with the QR results shows that the damping and frequency results from the 20 x 20

subspace matrix are accurate up to six and two significant figures, respectively, with

comparable condition numbers, and that the accuracy increases with the increasing

dimension of the subspace matrix. For the AS method, two points are emphasized. First,

the accuracy is independently corroborated by the respective residual error results. Second,

the order of magnitude of the eigenvalue condition number is close to the ideal value of



one,which demonstratesthat the eigenvaluecomputationsarewell conditioned. The most

distinguishingfeature is the relative saving in machine time, which is shown in Fig. 1; 53.4

versus 19.8 seconds for a subspace dimension of 20 x 20. This trend offers great promise for

large-order FTMs. Because the machine time required for the QR method increases almost

cubically with the order of the FTM, the relative saving increases rapidly with the

increasing order.

Concluding remarks

For the partial eigenanalyis of the FTM, the AS and the QR methods are compared for

machine-time efficiency and computational reliability. The numerical experiment shows

that the Arnoldi-Saad method is more economical than the QR method with comparable

computational reliability. The partial eigenanalysis of large-order FTMs is important to

comprehensive stability analysis of rotorcraft, and relatively little is known. Given this

fact, the results should serve as a useful reference point.
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SUBSPACE

DIMENSION

DAMPING

LEVEL

NONUNIQUE

FREQUENCy

CPU

TIME

(SEC.)

RESIDUAL

ERROR

EIGEN-

VALUE

CONDITION

NUMBER

12 (AS) -0.104757 0.658677E-2 13.50 0.24E-01 1.8

16 (AS_) -0.105274 0.456415E-2 16.08 0.21E-02 1.9

20 (AS) -0.105322 0.428022E-2 19.76 2.0

24 (AS) -0.105322 0.429649E-2 23.92 2.4

-0.105322 53.4092 (QR)

0.23E-04

0.30E-06

0.29E-150.429647E-2 3.4

Table 1 Machine time and computational reliability results for the

Arnoldi-Saad method vis-a-vis QR method (FTM dimension = 92x92)
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Fig. 1 Comparison of machine times required by the

Arnoldi-Saad and the QR methods (FTM dimension = 92x92)


